Implant uncovery with the Picasso diode laser

By Gregor M. Kurtzman, DDS, MAGD, DICI, DADIA

Introduction

Dental implants are placed either utilizing a 2-stage approach (separating abutment placed at implant placement) or a 2-stage approach (implant is covered by soft tissue at time of placement) and modification of the soft tissue to expose the implant fully may be required. When the prosthetic phase is initiated, soft tissue to either removed to uncover the implant or reshape the gingival margin for better esthetics which can be accomplished by several methods. A current instrument (ie. Scaler or tissue punch) has been the traditional approach to incise through the soft tissue to the underlying implant. The result is a bleeding edge that can interfere with impressions if they are to be taken at the same appointment. Additionally, post-operative sensitivity has been reported and can result from the fresh cut edge. Typically a delay of 2 weeks or longer is required before impressions can be taken so that bleeding doesn’t hamper the accuracy of how the soft tissue is captured.

An alternative to the blade or diode, electro surgery has been offered as it can cut the tissue without being able to touch the tissue without being able to touch the root of the tissue. This can be accomplished by several methods. A current instrument (ie. Scaler or tissue punch) has been the traditional approach to incise through the soft tissue to the underlying implant. The result is a bleeding edge that can interfere with impressions if they are to be taken at the same appointment. Additionally, post-operative sensitivity has been reported and can result from the fresh cut edge. Typically a delay of 2 weeks or longer is required before impressions can be taken so that bleeding doesn’t interfere with the accuracy of how the soft tissue is captured.

Increasing diode lasers are being utilized in dental practices both due to lower costs to implement this technology than the more expensive CO2 and Nd:YAG lasers and the wide range of effective treatment afforded by these devices. Diode lasers, such as the Picasso (AMD Lasers, Indianapolis, IN, www.amdlasers.com) (Figure 1) provide adequate power to modify soft tissue and around the dental implant for uncovery or alteration of the gingival margin to improve the esthetics. Additionally, these operate within the temperature range recommended so that the negative effects associated with electro surgery do not occur to the bone around the implant. Coagulation can also be controlled combined with the lack of tissue shrinkage following use of the diode laser allowing impressions to be taken at the time of uncovery. As the diode laser affects fewer cell layers, tissue response does not involve an inflammatory response that can lead to tissue shrinkage during the healing period the first few weeks after treatment.1-2 (Figure 2)

Utilization of the diode laser

Diode lasers are primarily used in a contact application when cutting or coagulation is required.3 The diode laser tip is used in either an initiated state or an uninitiated state. Initiated refers to the tip of the diode laser which has been coated with a blocking material. This allows energy from the diode when activated, to heat the tip causing cell ablation (vaporization). The laser also creates an area of biostimulation adjacent to the coagulation zone. The laser is activated for 1 second. This is repeated 6-8 times contacting different areas of the tip so that when finished the entire tip and 3-4mm of the sides has been marked with the articulating paper. It is recommended to avoid articulating ribbon as it will irritate and be ineffective in initiating the tip. A properly initiated tip will glow orange when the foot pedal is depressed. The tip should be wiped with a piece of dry gauze to remove debris periodically as it is being utilized to maintain efficiency. When cutting fibrous tissue it may be necessary to reinitiate the tips during the procedure when the tip appears to not be cutting well.

Cutting efficiency is related to wattage. The higher the wattage, the faster the soft tissue is vaporized. But a greater zone of unwanted lateral thermal damage may result. It is advised to use the lowest wattage to accomplish the task to avoid the risk of thermal damage within the adjacent tissue. The assistant during usage of the diode laser uses the IVF near the site to remove any odors and periodically can spray water on the site to aid in cooling the tissue. This also minimizes thermal issues which improves initial healing. To laminate the soft tissue covering the implants cover screw or resharpen the tissue for esthetics a setting of 0.8 to 0.9 watts in a continuous mode is usually sufficient. A 400 micron diode tip (orange) is utilized for oral and periodontal surgical applications. The 300 micron tip (purple) is designed for periodontal applications such as Laser Assisted Periodontal Treatment (LAP). Beyond the carbonization zone, an area of hemostasis (coagulation) occurs. Typically sites treated with the diode laser will demonstrate little to no bleeding depending on the condition of the tissue prior to treatment. Tissue that is hemorrhagic will require longer contact with the diode laser to achieve coagulation and may occur due to the inflammation present prior to laser treatment. The coagulation affects and lack of treatment to the site may allow immediate implant impressions should be desired.

The laser also creates an area of biostimulation adjacent to the coagulation area. Tissues and cells following irradiation with a diode laser, have a

Figure 1: Picasso Diode Laser (AMD Lasers)

Figure 2: Companion of the depth of affected cells with an electro surgery unit and a diode laser

Figure 3: Tissue reaction upon contact with an initiated diode laser tip demonstrating the effect as one moves away from the tip

Figure 4: Implant to be uncovered (A) presents with two options depending on width of attached gingiva available. Wide band of attached gingiva will remain after removal of tissue over cover screw, the diode is utilized in a spiral pattern (B) narrower band of attached gingiva present, an elliptical cut is made with the diode and tissue is pushed buccally and lingually to preserve the attached gingiva (C).

Figure 5: When minimal keratinized gingiva is present, the diode laser is utilized to make an incision distal mesially and the tissue is spread comprising all of the attached gingiva present.

Figure 6: Buccal view of the anterior maxilla demonstrating preservation of the papilla due to the provisional bridge.

Figure 7: Occlusal view of the anterior maxilla demonstrating preservation of the papilla due to the provisional bridge.

Figure 8: Picasso diode laser removing soft tissue to uncover the implants cover screws.

www.dental-tribune.me

Page 2

MAGD, DICOI, DADIA

The World’s Dental Implant Newspaper · Middle East & Africa Edition

May-June 2016 | No. 3, Vol. 6

Published in Dubai www.dental-tribune.me
biostimulatory effect that provides faster or more favorable wound healing and decreases the risk of infection. This is accomplished using a scalpel or electrosurgical unit. The laser irradiation stimulates the proliferation of mesenchymal stem cells within DNA alterations in the affected cells. Thus, wound healing is enhanced and soft tissue at the cut edges demonstrates faster healing than when treated with a scalpel or other methods by stimulation of gingival fibroblasts inducing growth factors. It has been reported that biostimulation via the diode laser also has a positive effect on bone cells and can be stimulatory to the bone cells at the crest around the implant. Compared to conventional methods, tissue healing as well as postoperative sensitivity was less with the diode laser than with other methods.

Implant Uncovery technical considerations

The width of attached gingiva remaining will dictate the best method for implant uncovery. (Figure 4A) When a wide band of attached gingiva is present and a sufficient amount of bone is exposed, the patient may present after uncovery on both the buccal and lingual crest, and the diode laser is activated and inserted at the center of the site and worked in a spiral pattern outward until the entire cover screw is exposed (Figure 4G) A curette or other instrument may be necessary to loosen the tissue over the cover screw as the peristemeum during implant healing becomes adherent to the titanium cover screws. Sites that present with a narrow width of attached gingiva of 3-5mm at the crest will require some conservation of the remaining attached gingiva. In this clinical situation, the diode is utilized to remove an elliptical piece of soft tissue over the cover screw and then the tissue is pushed buccally and lingually to preserve the attached gingiva. (Figure 4C) If less attached gingiva is present on either side of the center of the crest then the practitioner will need to preserve all of the attached gingiva present and a conventional flap is recommended to be able to position the tissue in a more apical direction. When this is necessary incisions can be made with the diode laser as an alternative to a scalpel. (Figure 5)

Case report

A 45-year-old female patient presented with severely malpositioned maxillary central incisors tipped facially and a desire for esthetic improvement. A DIC is taken and noted minimal bone present over the facial of the central incisors. Options for treatment were presented to the patient which included orthodontics to correct esthetics or extraction of the central incisors, placement of implants at those sites and restorations on the anterior teeth. The patient indicated that she did not wish to pursue orthodontic treatment option due to the time involved.

The patient presented for surgery and the central incisors wereatraumatically extracted under local anesthetic. The adjacent teeth were prepared for crowns, which would support a provisional bridge during the healing/integration period. A 4mm wide 24 degree Co-Axis implant (Keystone Dental, Burlington, MA) was placed into the osteotomy at each central incisor offering the prosthetic axis to a vertical position relative to the adjacent teeth. The trajectory of the premexilla. A healing screw was placed and curing was performed with shortable PVA sutures. A stent created over the wire of the study models that had been modified was filled with an auto-cure provisional resin (Perfectemp 10, DenMat, Lompoc, CA) and seated over the anterior and allowed to set. Upon setting the stent with provisional resin, the stent will usually go down and get trimmed and polished. The material at the implant site was shaped to form an emergence profile in the soft tissue and preserve the papilla.

Six months post implant placement the provisional bridge was remade and preservation of the papilla was confirmed with a natural emergence profile within soft tissue (Figure 4, 5, 6). A local anesthetic was administered. The Picasso diode laser was set to 2.5 watts in continuous mode with an initiated tip and at the center of the emergence profile. Soft tissue above the implants cover screw and moved in a circular motion moving outward until the entire cover screw was exposed. (Figure 8) The process cuts the desired soft tissue and coagulates any bleeding from the cut edges. This was then repeated on the second implant. (Figure 9) Open tray implant impression abutments were placed into the implant and seating verified radiographically. An impression of the maxillary arch was taken utilizing Aquasil heavy body (VPS, Caulk, Milford, DE) and a MTA Advanced Implant tray (Hager Worldwide, Hickory, NC) and Aquala Ultra mixed around the preparations and implant abutments. Implant abutments were placed onto the implants. (Figure 10) The previously placed provisional bridge was tried in and modified at the pontics to allow the bridge to fully seat over the healing abutments and luted with a provisional cement (Bosi Temp LT, GC America, Alsip, IL).

Two weeks later the prosthetics returned from the lab (DenMat Labs, Lompoc, CA) and the provisional bridge was removed. The healing abutments were removed and the soft tissue was recontoured a lack of inflammation and a good periodontal health where it had been modified. The central incisors tip 7, 10 and 9 and the screws retained zirconia based implant crowns inserted. A radiograph was taken verifying fit of the implant prosthetics. A torque wrench was utilized to tighten the fixation screws on the implants to 40 Ncm and the ceramic crowns were luted with Panavia 5A resin cement (Kuraray, NY, NY). Occlusion was checked and adjusted where needed.

Conclusion: Diode lasers are a useful adjunct to soft tissue modification to uncover dental implants or esthetically re-contour the gingival margin. They provide better safety than laser surgery maintaining a temperature profile within the safety zone of bone and do not cause tissue shrinkage that can affect the esthetic outcome. As the diodes tip provides simultaneous cutting and coagulation (hemostasis) a clear advantage to the use of a scalpel or tissue punch immediate impressions can be accomplished without site bleeding affecting the accuracy of the capture of the soft tissue contours and position.

References


The full list of references is available from the publisher.
Study finds fundamental misconceptions about dental implants among patients

By DTI

HONG KONG, China: Investigating patients' knowledge and perceptions regarding implant therapy, a Chinese study has found that an alarming number of participants had inaccurate and unrealistic expectations about dental implants. Moreover, the study determined that only 18 per cent felt confident about the information they had about the treatment.

In the study, the researchers investigated preoperative information levels, perceptions and expectations regarding implant therapy via a questionnaire. Responses from 277 patients were obtained during 2014 and 2015 in three different locations in China (Hong Kong, Sichuan and Jiangsu).

The analyses established that about one-third of the participants had mistaken assumptions about dental implants. According to the researchers, common misconceptions were that dental implants require less care than natural dentition, implant treatment is appropriate for all patients with missing teeth, dental implants last longer than natural dentition, and there are no risks or complications with implant treatment.

Overall, younger respondents (< 45) and those with higher education (bachelor’s and postgraduate degrees) tended to have more realistic perceptions and lower expectations of the treatment outcome.

When asked about their level of knowledge, 63 per cent of the participants said that they were generally informed about implants, but only 18 per cent felt confident about the information they had.

The study, titled “What do patients expect from treatment with dental implants? Perceptions, expectations and misconceptions: A multicenter study”, was published online ahead of print on 23 March in the Clinical Oral Implants Research journal.

Although dental implants are gaining increasing popularity, patients' are often insufficiently informed and their perceptions unrealistic, a study has found. (Photograph: AnnaMoskvina/Fotolia)
Introducing Innovative and High-Quality Restorative Solutions

NEW!

Industry-standard Conical Connection

Industry-standard Internal Hex Connection

NEW!

HAHN™
TAPERED IMPLANT

Industry-standard Conical Connection

Industry-compatible Prosthetics

GLIDEWELL DIRECT
CLINICAL AND LABORATORY PRODUCTS

BruxZir®
ANTERIOR
SOLID ZIRCONIA

For more information
www.glidewelldirect.com
mail@glidewelldirect.com

Glidewell Direct is actively seeking distribution channels.